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I. INTRODUCTION 

Unlike the Temtron, the proposed Fermilab Main Injector ha,s only one beam cir- 
culating. either prot,on in one direction at one time or ant,iproton circulating in the 
other direction at, another t,ime. As a result, a. beam-position monitor with one t.ermi- 
nal per st,ripline will be enough. This can be accomplished by shorting one end of the 
directional beam-position monitor in the Tevatron. 1 The monitor impedances seen bJ 
the beam should be unchanged and so does the signal monitored at, the terminal. The 
elimination of one terminal not only leads to simplification of monitor fabrication and 
installation. It amounts to a lot of savings also. 

The computation of stripline impedances has been discussed by many authors.‘x3 
However: most, of the discussions have been more or less intuition oriented. We would 
like to bring in the concept of transmission line rigorously and see how a bunch current 
is reflect,ed and t~ransmitted. A time-domain picture is used and followed throughout, 
although some computations have to be done in the frequency domain when the con- 
cept of impedance is introduced. For simplicity, we assume the transmission line to 
be nondissipative and nondispersive. The equations governing the transmission line 
and the input impedance with various terminations are reviewed in the Appendix. \Ve 
discuss in Sects. II md III, respectively, the stripline shorted at one end and the di- 
rect,ional st,ripline with matched terminations at both ends. In Sect. IV> we derire the 
impedance and monitored signal of a stripline terminat,ed at the center, and discover 
that there are no resonances when the velocity of the beam puticles is equal to the 
velocity of the transmission line. In Sect. V, transverse impedances are discussed. 

II. STRIPLINE SHORTED AT ONE END 

This is the proposed stripline t,hat we are interesting in. It consists of a plate of 
length ! with termination impedance 20 at the upstream end (z = 0) and shorted at 
the downstream end (z = .!) as shown in Fig. la. For the convenience of discussion, 
we extend the plate to 2 = -< as in Fig. lb and take the limit [ --t 0 at the end. 
The stripline is at a constant, distance from the beam pipe surface, forming with it a 
transmission line of characteristic impedance Z0 and velocity tr. Consider a localized 
ultra-relat,iristic bunch of current &(t-z/c) defined by 

io(t - z/c) = J dwIo(w)e~“(‘-“‘) (2.1) 

trawling to the right, where c is velocity of the beam particles which we take as the 
velociby of light. .4n image pulse current -io(t - z/c) will be induced on the upper 
surface of the stripline. To maintain neutrality, there should also be an image current 
-+ &(t&zjc) on the lower surface for Pt < z < 0, which we are concentrating on nox. Let 
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us assume that this current pulse pa,sses 2 = 0 at time 1= 0. When this current reaches 
z = 0. it sees a termination impedance 2, and a transmission line of characteristic 
impedance Z0 in parallel. The current therefore splits into two equal parts with one 
half i&(t) flowing across the termination. The other half iiO(t -Z/G) flows into the 
I > 0 part of the stripline, but with velocity u, the velocity of the transmission line. 
\Vhen it reaches the downstream end t = I at time e/v, it is reflected. \Vhen the 
reflected current reaches the upstream end z = 0 again at time 2!/v, it sees a matched 
termination Z0 and is completely absorbed without any more reflection according to 
Eq. (A.12). Therefore: the total current in the transmission line can be written as 
[Eqs. (A.9) and (A.12):, 

il(t,2) = i {io(t - Z/V) -t ioi(t-e/u) + (z-e)/~]} , (2.2) 

and the total current flowing across the terminat,ion is 

i,(t) = ; I&(t) - io(t -. 2fyv)j (2.3) 

The positive sign is chosen for the reflected current in Eq. (2.2) because the stripline is 
shorted at z =1/2. The total current, at. z = 0 is 

&(t,O) A i,(t) = G(t) (2.4) 

equal to the incident current at z = 0- as required. To see that Eq. (2.2) is indeed 
correct, let us go to t,he frequency domain. The current,s become 

qw, t) = + I~(~) [e-jkz t ejk(~-2~)] , (2.5) 

2,(w) = ; IO(W) [I - t-y ( 

where k = u/v. Their ratio at z = 0 is 

(2.6) 

:zl(W> 0) 1 _ ,-Sk! 1 

y = 1 ~ t-j2kl = j tan ke ' 
%(W) 

(2.7) 

which is just t,he ratio of the termination impedance Z0 to the input impedance jZutan kl 
;Eq. (A.14)] of a shorted line, and is just t.he ratio into which the current at z = O- 
should split in the frequency domain. 

The potential along the stripline is, from Eqs. (2.5), (A.3) and (A.4): 

q(t,t) = ;z,{i,(t ~ z/r) - iJ(t-e/w) - (Z-E)/tq} 1 (2.8) 
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which vanishes at t = ! as required. In the frequency domain, using Eqs. (2.5) and 
(A.8) or taking the Fourier transform of Eq. (2.8). the potential is 

qw, z) = i z~I,(~) [e-jkz ~ 2k(z-2f)] (2.9) 

The p&en&l at 2 = 0 is 

&(w,O) = ; &I”(cd) [I - e-y 1 (2.10) 

which can also be obtained by multiplying the current through the termination iT by 
the termination impedance 2,. The longitudinal impedance seen by t,he particle bunch 
or the image current at z = O- is therefore 

Z,, = ;f(u,o) 
Mw) 

- ; & [l - ,-y 

This is in fact, exactly the same as the parallel impedance of the terminat,ion impedance 
Z0 and the impedance of the shorted transmission line j&tan kt. 

In the t,ime domain> t,he potential at 2 = 0 is 

tc(t,O) = ; 20 ;&(t) - io(t - 2f/v)j (2.12) 

Therefore: if we monitor at. the terminat,ion, we will see first half the bunch pulse 
followed at a time 2!/v lat,er by the other half but with opposite sign. 

In the above, we assume that the stripline wraps around the beam completely. How 
ever. if the stripline subtends an angle & at the beam pipe axis> all the currents ii and 
i, should be multiplied by &/27i bemuse this is t,he fraction of the image current of the 
beam collected by the stripline. This applies also to t,he potential 6r of Eqs. (2.8), (2.9)> 
and (2.12). However1 the a,verage pot,ential drop seen by the bea.m is only (&/27i)C( 
because only a fraction &,/2x of the image current, crosses the gap and sees the poten- 
tial drop. Therefore, t,he impedance of the stripline as seen by the beam in Eq. (2.11) 
will be reduced by (40/2a)2. 

III. DIRECTIONAL STRIPLINE TERMINATED AT BOTH ENDS 

The directional stripline is shown in Fig. 2. Similar to the shorted one discussed in 
Sect. II, the image current pulse on the underside of the st,ripline splits into two equal 
parts at z = 0, one half going through the termination of Zo. The other half goes into 
the t,ransmission line formed by t,he stripline and the beam pipe and is totally absorbed 
by the termination impedance Z,, at z = e without, reflection. 
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The image current on the upper surface of the stripline travels with the same velocit) 
as t,he pa,rticle bunch. When it reaches the z = e gap at t,ime 4/c: it goes int,o the 
underside of the stripline. Here, it splits into two equal part,s, one half going a,cross 
the downstream termination while the other half traveling backward to the left and 
is absorbed by the upstream termination wibhout reflection. Thus the current on the 
underside of the stripline is 

i((i,Z) = $i& -- z/tJ) + &[(t-e/c) t (z-q/u]} (3.1) 

The currents passing through the upstream (M-hand) and downstream (right-hand) 
terminations are respectively, 

i,,(t) = ;{iqt) ~ io(t-l/c-l/tJ)} : (3.2) 

i,,(t) = ;{i+e/v) - io(l-l/c)} 

The potential along the transmission line is, according to Eq. (.A.4), 

(3.3) 

rc(&r) = ; Zo{il$ - z/v] ~ &[(t--e;c) + (z--e)/v:} ) (3.4) 

which gives at 2 = 0 and z = e the correct potential at the upstream and downstream 
t~rrmimtions: 

e,“(t) = ; &{;~(t) - io(t-ejc-~e/u)} ~ (3.5) 

e,,(t) = ; Z”{&(l - e/v) ~ io(l - e/c)} (3.6) 

\Ve see that if the velocity of the particle beam c is equal to the characteristic 
velocity v of the transmission line, t,he potential at t,he downstream termination ~,~(t) 
va,nishes. For this reason, the situation becomes exactly the same as for the shorted 
stripline discussed in Sect. II. In pract,ice, the velocity of a transmission line is wry near 
to c: unless there is so obstructions in the line to lower the velocity. The potential at. 
the upstream termina,tion e,,(t) d’ pl _ 1s avs also a current beam pulse followed by another 
beam pulse of the opposite sign at a t,ime 2&!/v la,ter. 

To derive the impedance of t~he stripline, we need t,o resort to the frequency domain. 
The potential along t,he stripline or Eq. (3.4) becomes 

6c(wt z) = i z,I,(~) { ,-3= - ejk~e-jk~(~+/c)} 
(3.7) 
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The potentials at the upstream and downstream ends are; respectively, 

G,,(~) = i ZJ~(~) { 1 -., e-W(l+~c/c)} , (3.8) 

(3.9) 
which ca,n also be obtained by Fourier transforming Eqs. (3.5) and (3.6). These poten- 
tials are seen respectively by currents ID(w) at the upstream end and I~(w)E-~~“~ at 
the downstream end, contributing impedances 

z,,. = i z. { 1 ~ e-jWl+u/c)} : 

z, d = - i z. { e-jW-ulc) - l} 

The longitudinal impedance of the whole st,ripline is the sum of the two or 

zii = i z. { [I ~ e-W(l+v/c)] + [I _ e-jk((l-e/c)]} : (3.12) 

which is exactly Eq. (2.10) if v = c. Th e above impedance can be checked against t,he 
poser dissipation across t,he two terminations; i.e., 

1 
5 ;Io(w)‘2 -7zf z,, = $ o { iCT” ;2 t :;,,i*} (3.13) 

IV. STRIPLINE TERMINATED AT THE CENTER 

The stripline has its upstream end at t = -e/2, its downstream end ant z = e/2, 
and is terminated at z L 0 by an impeda,nce Z, a.s shown in Fig. 3. It forms a trans- 
mission line with the beam pipe having characteristic impedance Z0 and velocity z’. 
Resides reflections a,t the upstream and downst,ream ends, currents will also be partly 
transmit,ted and reflect.ed at the termination. An analysis in the time domain will be 
extremely complicated, because it involves the summation of infinite number of reflected 
and transmitted pulses. Here: we first solve the problem fin the frequency domain and 
t,ransform the result~s back to the time domain. Aft,,er that, direct derivation in the time 
domain is pursued. 

1. Impedance seen by the beam 

‘The particle beam current iO[t - (r+C/2)/c: feeds the stripline by inducing currents 

;,[I-“+y , io[(1-~)+y2] 
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on the underside of the stripline, respect,ively, at the left, md right ends. For the 
discussion below; let us simplify the problem b\- assuming the equality of the particle 
beam velocity c and the line velocity ‘I’. This assumption is lat,er relaxed in Sect IV.3. 

In the frequency domain, the currents on t,he upstream (left) and downstream (right) 

sides of t,he underside of the st,ripline are, respectively, 

is(z) = I,,(~) { e-jk(+W) _ a [e-jk(zil/2) ~ ejk(z+(iZ)]} . (4.2) 

and 
;d(z) = I,(~) {$4-WZ) + b [,-N-WI _ ejk(~-U~)]} , (4.3) 

x-here I,(u) is the Fourier transform of the bunch current at z = -L/2. In the above, 
7 : 
Z”> Zd’ a: a,nd b are functions of w: although the w-dependency has been suppressed for 
convenience. The expressions in the squared bracket,s hare been writ.ten in such a way 
that, they vanish at z = -e/2 or z = e/2, the correct reflection condition for open-circuit 

ends. The corresponding potentials on the upstream and downst,ream sides are 

G,(~) = Zig, { e-jk(z+W) + a [e-jk(z+Uz) _ ejk(+lP)]} : 

and 
,ss(~) = &I,(~) { -$4-W2) + b [e-jk(2-!/2) 4. $4-W)]} 

These potentials have to be equal at z = 0; therefore 

,-W/2 + a [,-M/z + ,jkW] = pr-j3&‘2 + b [&2 - e-WIz] 

The current through the termination is 

;, = i”(o) ~ i,(o) = I~(~) {,-M/z ~ e-jkW2 + (o + b) [,-jkCiz + ,&iz]} 

which is equal to iu(0)/Z,_ or 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

zo{tmjk(!z+a [e-jk(lZ_ejk~/2]} = ZT{e-jkt/~pe-jk3tP + cai.b) [emjkl/2+ejk1/2]} 

(4.8) 
With CY = t-jkl and ,B = 2,/Z,, E,qs. (4.7) and (4.8) can be rewritten as 

i 

l*C? 

l+u+B(l-a) p;‘,) (%) = ( -_l;~;:)4) ’ (4.g) 
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from which one obtains readily 

and 
b= _ ++24(1La) 

1ta in 2@-a) 
(4.10) 

The potentials a,t the upstream end (z = -e/2) and downstream end (z = C!2) are: 
respectively, 

(4.11) 

G,(e/2) = Z&(w)(-a t 26) = Z&(w) pi’s”,-;;(h)) (4.12) 

The longitudinal impedance seen by the beam crossing the upstream gap is obtained 
by dividing .G.( -f/2) by IO(u): 

(2P+l)(l--a) 
zI1” = Z”lta +2P(1-a) (4.13) 

The longitudinal impedance seen by the beam crossing t,he downstream gap is obtained 
by dividing -6,(!,‘2) by aIO(w): .h w err a is the transit-time phase lag of the bunch, 

Z/Id = -Z, M-l)(lp4) 
1+cu +- 2!3(1-a) 

‘The total longit,udinal impedance of the stripline is the sum of the two: or 

z;, = zo 
2(1-a) 

1+a + 2,8(1&Q) 

Equation (4.15) is more complicated than Eq. (3.8) b ecause there are infinik reflections 
and both ends and the center of the stripline. This remains true even if we let, Z, : Z,. 
At low frequency. the stripline impedance becomes 

which is inductive. 

2,; = jke ;1 ~ jpkl] (4.16) 

2. Podential at the terminal 

Let us examine the pokntial at the krmination (2 = 0); which is 

6, = Zolo(w)ejkf’2ju T a(1 + a)! (4.17) 
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Substituting the solution for a, we get 

ET = ZoIo(Y)a”z 
W-a) 

1+a+2/3(1-a) 

There is only power dissipation across the t,ermina,tion impedance: which is 

id ~2 

PT+k 
T 

(4.18) 

It is easy t,o verify with the aid of Eqs. (4.15) and (4.18) that this power lost is exactly 
C=qual to 

1 
P = - viol’ 7&z,; 

2 
(4.20) 

In order to study the temporal behavior, w-e expand Eq. (4.18) in powers of a: 

(4.22) 

whose magnitude always less than unity. Transforming to the time domain, we have 

c,(t) = ; Z,(l-~):;,(t-!/2~) - (1-q)io(t-3&/2v) 

~ ~(lL~)i0(~C50/2v) ~ $( 1-v)i0(t-7!;2v) - q”( l--T)io(t-9c,/22:) - 1 (4.23) 

The first t.erm in the squared brxkrt represents the first wrival of the image pulse from 
the upstream end at, time e,‘2v. Part of this pulse is reflected, part of it is transmitt,ed, 
and the rest, passes through the termirmtion. At time e/v, t,he reflected and transmitt.ed 
part,s reach, respectively; the upstream and downstream ends of the stripline and are 
reflected again. At this moment, the beam feeds the downstream end of the st,ripline 
wit,h an image pulse [Eq. (4.1):. All th ese arrive at the termination at time 3!/2v 
giving rise to t,he second term in the squared brackei, of Eq. (4.23). The reflections and 
transmissions go on indefinitely. 

3. Solution in the time domain 

Ll’e now look into the time domain directly. The solution is illustrated in Fig. 4. LVe 
start with a beam pulse of current, i0!~G(z+O/2),‘v:. Th’ IS current enters the upstream 
(left) end at time zero. At a time P/22> later, t,he current reaches the t,ermination Z, 
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(z = 0). It is reflected as ,&[t’(z- e/Z)/ 1: L and transmit~ted as &it - (z+e/Z)/~~~ 
where the reflection coefficient p and the transmission coefficient p are given according 
to Eq. (A.19) by 

I ~ 1-17 23 1+ll 
p-23+1 2 

and p’1-p=20T1=2> (4.24) 

with /3 = 2,/Z,. The current flowing down the terminat,ion is therefore 

i, = (1+ p ~ p)io [t ~ j/2v] (4.25) 

The reflected and transmitted currents reach respectively the left and right ends at 
time d/a. There, because the line is open, t,hey are reflected as PpiojtP (z+3.!/2)/u: 
and p&jtt(i - 3C/2)/v]. .4t th’ 1s moment: t,he beam pulse reaches the downstream 
(right) end of the stripline and induces a current i0[t+(z-3!/2),/v: flowing into the the 
stripline from the right. We continue to follow the reflections and t~ransmissions of these 
two input sowces. The reflected and transmitted currents are shown in Fig. 4. Those 
currents originate from the l&hand source are writ,ten above the arrows and t,hose 
currents originate from t,he right&hand source are written below. The t,otal current in 
a region of the stripline is the sum of all the reflected and transmitted currents in that 
region. For example; the current, flowing through the termina,tion at z = 0 is 

i, = (1-p&(t-e/20) - (l+~-#[io(t-3C/2~) + (P-p)&(t-5&,‘2v) 

+ (~~p)‘&,(t&7~/2v) + (P-p)%,(t-9!/2v) A.. ] (4.26) 

The voltage acrc~ss the termination is 

e, = Z,i, (4.27) 

With the help of Eqs. (4.22) and (4.24): it, is easy to show that Eq. (4.27) is indeed 
identical to Eq. (4.23). 

4. Resonances 

The longitudinal impedance of the stripline seen by the beam in Eq. (4.15) can be 
rewrit,ten as 

Z,l = Zo(l ~ rl)- 
I-7p i 

(4.28) 

where 7 is given by Eq. (4.22). F or resonances to occur, we must have 7j = 0-1 = Pr 

(4.29) 



The charackristic impedance ZO of a transmission line is mostly real, and so is the 
termination impedance Z,: implying that, resonances are not possible. 

At the first thought, this result is very puzzling, because such of stripline system 
can support resonances. To demonst~ratr t,his. let us omit for the time being the current 
induced by the beam a.t the downst,ream port :Eq. (4.1)]. This is equivalent to omitting 
&-3t’2) from Eqs. (4.3) and (4.5), or t-j3k( from Eqs. (4.6) to (4.8), or the a2 terms 
on the right side of Eq. (4.9). The result is 

a(lTa-2,LLY) 

ad = -(l+a)ll 
and 

24 

ia-2/3(1-(Y)] b’ = -(1-a)3-a1&qpu): . (4.30) 

The potent,ial at the upstream end (z = -e/2) is 

2 
q,-W) = zoIo(yiij 1 

which is just, the input impedance of a transmission line of length L/2 terminated with 
a,n impedance formed from the parallel of Z, and anot.he:r open-ended transmission line 
of length O/2. The potential at the downstreun end (z = P/2) is 

G’d(!/2) = ZJ”(U) (1-9)a 
(lta)(l-w) 

(4.32) 

It is obvious from Eqs. (4.31) and (4.32) that the poteniial on t,he stripline resonates 
whenever 

a = t-Jk( = -1 (4.33) 

or when the length of the striplinr I equals an odd number of half-wavelengths. In fact, 
the pokntial along the line for the lowest. resonant, mode (!=half wavelength) is gixn 

,‘iT,(l + C?);‘(z) z - sin 7 (4.34) 

Now let us include the induced current a,t the downstream port. Its effrct to the 
stripline is exactly the same as the induced current. at t,he upstream port. The only 
difference is that, t,his downstream-port current, is of negatiw sign going in the opposite 
direction and with a pha,se lag of a = em jk’ It, drives a resonance with potendial exactly 
the same a,s Eq. (4.34), but with sign reversed. The resonance is therefore cancelled 
exactly. 

More accurately, the transit-time phase lag of the bunch across t,he stripline should 
be 

al = ,-id/c _ e-jkWc (4.35) 

10 



where c is the velocity of the bunch particles. .4ccordingly, the potentials at the up- 
stream and downstream ends are, respectively, 

C,(-l/2) = ?-1/2) ~ cq(!/2) i (4.36) 

E'(!/2) 
E,(!/2) = Z-E/2) ~ y (4.37) 

If the velocity of the transmission line v is equal to the velocity of the particle bunch c, 
it is easy to verify that the resonance fact,or (l+u) in t,he denominators of E,qs. (4.36) 
and (4.37) are cancelled so that the resonances disappear. We then recover Eqs. (4.11) 
and (4.12). However, if ‘u is different from c, there are no such cancellation. From 
Eqs. (4.36) and (4.37), the longitudinal impedance seen by the beam will become 

z:, = Zo(lk)l-a 
l-lp 

t ZO(lto)i;Ja);i:;-)l) 
a a cl! 

(4.38) 

In the above, the first, term is the impedance given by Eq. (4.15) or Eq. (4.28) and the 
second term accounts for the difference in ~1 and c which contribuks to the resonances. 

From Eq. (4.33)> the frequency of the n-th resonance is 

w, = (2n - l)? (4.39) 

The strength of the resonance is determined by the shunt impedance over figure of 
merit,, R/Q. The latter is related to the residue of Z,[ at, w = w, by 

lim (w - wn)Zii = -2 Y-Y- 0 
% 
” n 

We obtain 

which is independent of Z, as expected. When zi is sufficiently close to c, Eq. (4.41 
reduces to 

R 0 27izo v 2 

G n- (2np1) c 1 c-- i 
(4.42) 

V. TRANSVERSE IMPEDANCE 

To measure the transverse offset of the beam from the center of the beam pipe, we 
need two striplines on either side of the beam, exh subtending an angle 4” at the pipe 
axis. To compute the transverse impedance, we plxe a dipole beam at the beam axis 
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and calculate the the amount of image current induced on the striplines. The voltage 
across the upstream md downstream gaps of each stripline can be derived as in the 
above discussions. The longitudinal impedmce of the dipole mode, Z!; can then be 
inferred by equating the power loss at the termination impedances. The transverse 
impedance (of the dipole mode) can then be obtained using the relation 

Z,(w) = ;zyw, (5.1) 

The derivation has been given in detail in Ref. 3. In general, the transverse impedance 
in the direction from one stripline to the other of the pair is related to t,he longitudinal 
impedmce of a pair by 

Z,(u) = & ,; i ) 
2 

0 
sin’ +Zj!(u) : 

where b is the radius of curmture of the striplines encircling the beam. The transverse 
impedance in the other transverse direction is zero. 
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APPENDIX 

1. The telegrapher’s equations 

A t,ransmission line consists of two conducting surfaces running in say the r-direction. 
One of the surfaces is grounded. At time t and position z on the other surface, there is 
a, current i(t, z) and a potential e(t, z), which are not independent of each other. Since 
we are intereskd in a lossless md nondispersive line, the line carries only an inductance 
L per unit length and a capxitance C per unit length, which are frequency indepen- 
dent. Across a length dz, the potential drops by de due t,o the inductance Ldr, and the 
current changes by di due to the capacitance Cdz (see Fig. 4). The voltage and current 
are therefore r&ted by 

-=-L!! ae 

a2 at ’ 
ai -c-c;; a2 (A.11 

which are called the t,elegrapher’s equations. It is clear from Eq. (A.1) that ;(t>z) and 
e(t, z) satisfy a wave equat,ion with a velocity of 

The general solution is 

i(t,z) = f(t ~ z,h) + g(t + z/v) ! (.4.3) 

representing a wave traveling to to the right and a wave tmveling to the left. IVit,h the 
help of Eq. (A.1): the potential can be obtained easily- as 

e(t,z) = Zo[f(f. ~ z/v) ~ g(t - z/v): i (A.4) 

where we have introduced the characteristic impedance of the transmission line; 

Atkntion should to paid to the signs in Eqs. (A.3) and (.4.4). 

In the frequency domain, we have for exanple, 

i(t = z/u) = J dw 1&?Zp : (-4.6) 
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where 
Qw, 2) = JT(,),Tjk2 k = w/u : (A.7) 

represents wave t,raveling to the right (left), and I,(u) is given by Eq. (2.1). Substitution 
into Eq. (A.l) gives 

Qw,z) = iZ&(w: *) (A.8) 

2. Input Impedance 

Consider a transmission line of length I and krminated with a,n impedance Z, as 
shown in Fig. 5. Consider an input current flowing in t,he positive z-dire&on. This 
current will be reflected at the end of the line (z = !). So the total current is, for one 
frequency, 

I(+ z) = ro(u) [e-jk2 t pejk(~-2~)] : (A.9) 

where k = w,‘v and p is the reflection coefficient. The potential along the line is: 
xcording to Eq. (A.8): 

qw> z) = Z&(w) [e-jkz - pejk(z-2f)] (A.lO) 

The reflection coefficient p can be determined easily by matching the terminakd impe- 
dance Z, to the ratio of the potential and current at .z = f!; or 

z =+JJ&z~ 
T 

i(m,4 Oltp 

The reflection coefficient for the current is 

zo ~ z, 
p = z, + z, 

The reflection coefficient for the potential will be t,he negative of t,his. The time-domain 
picture can be obtained by performing inverse Fourier transforms on Eqs. (A.9) and 
(A.10). We see tha.t, providing t,hat Z, and Z, are frequeIlcy.independerlt,, t,he reflected 
current or potential has exwtly t,he same wave form as the incident current or pota- 
tial. In order words, providing that Z, and Z, are frequency-independent> the abore 
formulation can be carried out in the time domain. 

The input impedance is the ratio of the potential to the current a.t t = 0: or 

z~ = z 1 ~ pe-j2kc 
= zo 

jZ,, tan kt + Z, 
o 1 + pe-,2k’ Z” + jz, tan kE 

Note that when Z, = Zo, p = 0 implying tha,t. there is no reflection at the termina- 
tion. In order words, the current (or potential) fl owing into the termination is totally 
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absorbed. Under this situation, the input impedance Z; is just the charact,eristic imps- 
dance Z0 of the line. 

If the transmission line is short-circuited at, z = l!, i.e., Z, = 0, the input impedance 
is 

Zi = jZ,, tan ke 1 (A.ll) 

which is purely reactive and can take on any value depending on the frequency w and 
the length 0 of the line. 

3. Reflection and transmission 

Consider two transmission lines having the same relocit,y v and characterist,ic imps 
dance Z, joined together by a termination impedance Z, at 2 = 0 as shown in Fig. 7. A 
wave coming from the left will be partly reflected and transmitted. The total currents 
on the left and t.he right of the termination are given by 

Z,(u,2) = I~(~) [E-jkz t p2kz] (A.15) 

and 
l,(u,2) = lo(w)pt-jk~ (A.16) 

respectively, where p and p are the reflection and transmission coefficients. The voltage 
at, the termination can be obtained from Eqs. (A.15) or (A.16) by applying Eq. (A.4): 
or 

tgu) = Z&(Ld)( 1 - p) = Z&(w)p 

The current through the termination impedance Z, is 

Qw) = Io(u)(l + p - p) , 

which is also equal t,o ;,/Z,. Therefore, WC get 

(A.17) 

(A.I~) 

1 23 

p=2/3+1 
and p= ~ 

2111’ 
(A.19) 

with p $- p = 1 and ,0 = Z,/Z,. Note that if Z, and Z, are frequency-independent: p 
and p are are frequency-independent. If we perform an inverse Fourier transform on 
Eq. (A.15) or Eq. (A.16): we will find tha,t the current. or potential wave form does not 
change after reflection and transmission. 
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beam pipe stripline 
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Fig. 1. Stripline terminated at near end and shorted at far end. 
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Fig. 2. Stripline terminated at hoth ends. 

Fig. 3. Stripline terminated at the center. 
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z=+9../2 

Fig. 4. Reflected and transmitted currents in a stripline terminated 

at the center. The source is a beam current iO[t-(z+I/2)/v]. 
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Fia. 5. Transmission line 

Fig. 6. Input impedance 
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- iott-z/v) 

z=o 

Fig. 7. Reflection and transmission at a termination. The 

reflection and transmission coefficients for current 

are denoted by p and i. 
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